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ABSTRACT 
This scholarly article provides a thorough overview of medical imaging modalities and 

their various uses in segmenting and classifying diseases using artificial intelligence 

(AI).This study provide a systematic review of research articles that use AI approaches to 

investigate illness classification and segmentation in various anatomical locations. Each 

article's results are carefully examined as part of the study, which also identifies new trends 

and extracts key insights. Additionally, the study provides a critical discussion of the 

difficulties observed in these investigations, including problems with quality and 

availability of data, generalization of the model, and interpretability. The objective of this 

study was to perform a systematic review of research publications that use AI approaches 

to investigate medical imaging, A database search was conducted using five online 

databases, including Web of Science, Scopus, Science Direct, Google Scholar, and 

Semantic Scholar, to identify relevant primary research on medical imaging and AI, using 

Boolean operators, The analysis emphasizes how important hybrid approaches are for 

obtaining meaningful and successful outcomes across a range of disease types. These 

approaches smoothly combine systematic procedures. Future research prospects in the 

field of medical diagnosis are made possible by the promising potential of these hybrid 

models. Furthermore, future research efforts should prioritize addressing the difficulties 

caused by the scarcity of annotated medical pictures by utilizing medical image synthesis 

and transfer learning approaches. 

Keywords: artificial intelligence (AI), medical imaging, classification, detection, 

segmentation 

 

INTRODUCTION

With medical imaging, doctors may now diagnose 

and treat a wide range of disorders with greater 

clarity and understanding of the human body. With 

the development of multiple imaging modalities, 

such as magnetic resonance imaging (MRI), 

computed tomography (CT), positron emission 

tomography (PET), and X-ray imaging, physicians 

now have access to high-resolution, high-quality 

images that can provide important information 

about physiological processes and anatomical 

structures [1]. However, radiologists and other 

medical practitioners are facing tremendous 

hurdles due to the growing availability and 

complexity of medical imaging data. Medical 

picture interpretation is a laborious and intricate 

process that calls for a high degree of skill and 
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substantial training. Furthermore, it may be 

difficult to identify minute alterations that could 

point to the existence of a disease due to the 

overwhelming amount of imaging data generated.  

AI-based medical imaging can enable more precise 

and effective illness identification, segmentation, 

and classification, which could completely 

transform the sector. Large volumes of medical 

imaging data can be analysed by AI algorithms, 

which can then spot minute changes that can point 

to a disease. AI-based algorithms have 

demonstrated impressive performance in the 

identification of early-stage tumors from medical 

imaging, including brain, lung, and breast cancer 

[2, 3, 4]. Furthermore, precise diagnosis and 

treatment planning are made possible by the ability 

of AI-based segmentation and classification [5, 6, 

7] approaches to precisely identify regions of 

interest and characterize anatomical structures [8]. 

Although AI-based medical imaging holds great 

promise, a number of issues need to be resolved 

before these methods can be extensively used in 

clinical settings. The standardization of imaging 

methods is a crucial task since the consistency and 

quality of medical pictures can be greatly impacted 

by differences in imaging parameters [9]. 

Furthermore, the creation and verification of AI 

models may be hampered by the scarcity of 

labelled data. Data security and patient privacy are 

ethical issues that need to be properly considered. 

 

RESEARCH OBJECTIVES 

The objective of this study was to perform a 

systematic review of research publications that use 

AI approaches to investigate medical imaging. 

 

MEDICAL IMAGING 

For the purposes of diagnosis and therapy, medical 

imaging entails the use of a variety of technologies 

and procedures to provide visual representations of 

the internal structures and functions of the human 

body [10]. It is a vital instrument in contemporary 

medicine, allowing physicians and other medical 

specialists to identify and diagnose a broad variety 

of illnesses and ailments. Medical imaging comes 

in several forms, such as nuclear medicine imaging 

(Figure 1), ultrasound, CT, MRI, X-ray, and optical 

imaging [11]. Each of these methods has benefits 

and drawbacks of its own, and based on the 

particular requirements of the patient and the 

healthcare professional, they can be applied to 

different imaging studies. 

 

Figure 1: Medical Imaging 

 
 

X-Ray Imaging 

A strong method for non-invasively inspecting 

materials and things is X-ray imaging. With this 

imaging technique, X-rays are used to enter the 

item and, depending on the object's different levels 

of X-ray absorption, an image is produced [12]. 

Attenuation coefficient and contrast resolution are 

two important characteristics of the object being 

imaged that are provided by X-ray imaging. Digital 

imaging and communications in medicine, or 

DICOM, TIFF (tagged image file format), and 

JPEG (joint photographic experts' group) are a few 

of the formats in which x-ray pictures can be saved 

[13]. A transformative age in disease 

categorization and segmentation has begun with 

recent developments in X-ray imaging. Through 

the smooth integration of cutting-edge 

computational techniques with the characteristics 

of X-ray imaging, the field has made remarkable 

strides that have led to improved diagnostic 

accuracy and sophisticated understanding.  

Especially, [14] led a critical breakthrough in 

segmentation by fusing X-ray data with 

convolutional neural networks (CNNs). This 

ground-breaking work changed the paradigm and 
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had a profound impact on the diagnosis and 

treatment of pulmonary disorders by redefining the 

precision of lung tissue segmentation in chest X-

rays. This accomplishment establishes the 

groundwork for customized therapeutic 

interventions by utilizing CNNs' discriminative 

potential. Simultaneously, novel approaches have 

led to a rebirth in the classification of diseases. 

demonstrated how adversarial networks may 

revolutionize soft tissue segmentation accuracy 

and usher in a new era of structural distinction with 

care. To broaden these perspectives, [16] presented 

ensemble techniques that integrate X-ray pictures, 

producing incredibly precise classification results 

for different bone diseases and improving 

diagnosis comprehension. Moreover, X-ray 

imaging convergence using multimodal data has 

become a potent strategy.  

Especially, [17] perfectly captured this synergy by 

fusing X-ray pictures with complementary imaging 

modalities, demographic data, and clinical profiles. 

This thorough method surpasses conventional 

classification paradigms, increasing diagnostic 

precision and offering new perspectives on the 

intricate structure of disease pathology. [18] made 

a daring step in leading the way in the integration 

of electronic health data and X-ray images, 

resulting in a single framework that improves 

disease classification and prognosis. This novel 

approach improves predicted accuracy by utilizing 

extensive patient profiles, which opens up 

possibilities for pre-emptive interventions and 

individualized patient care plans. 

 

Computed Tomography Imaging 

With the use of sophisticated computer processing 

and X-rays, computed tomography imaging is a 

medical imaging technique that produces 

incredibly detailed cross-sectional images of the 

human body. CT imaging provides important 

details about bones, organs, and soft tissues, giving 

important insights into the internal structures of the 

body [19]. CT imaging is characterized by three 

main features: temporal, contrast, and spatial 

resolution. CT images are usually kept in digital 

format, which comes in a variety of file formats. 

DICOM and NIfTI (neuroimaging informatics 

technology initiative) are two of the most widely 

used formats [20]. 

Numerous significant studies have been conducted 

in the field of CT imaging, which includes difficult 

tasks such illness segmentation and classification. 

Interestingly, [21] is a prime example that shows 

how deep learning techniques may effectively 

segment pulmonary nodules in CT images. This 

innovative work shows that nodular entities with 

different morphological subtleties and densities 

can be identified. Simultaneously, [22] provides a 

paradigmatic framework for integrating PET and 

CT imaging modalities, which leads to improved 

tumour grading details and cerebral neoplasm 

classification. Cardiovascular diagnostics has 

come a long way because of the ground-breaking 

work of [23]. They have automated the 

segmentation of cardiac structures in CT 

angiography, which is essential for precise 

diagnosis, by using deep learning algorithms.  

A groundbreaking hybridized construct 

specifically designed for liver lesion segmentation 

in abdominal CT imaging is put forth by [24]. This 

architecture skilfully combines boundary-centric 

and region-based paradigms to provide results with 

strong integrity. This work, which adds even more 

richness to the tapestry [25], lays out a novel 

approach for the deep learning-based identification 

and categorization of cerebral hemorrhage in head 

CT scans. It seeks to offer quick and precise 

identification between various kinds of 

haemorrhages. The novel lung segmentation 

approach described by [26] for CT scans improves 

on later disease-specific analysis through the use of 

an anatomically guided and contextually aware 

framework. Meanwhile, [27] improves the 

situation by using a cascaded deep learning model 

that combines lesion segmentation and 

classification in a seamless way, increasing the 

accuracy of liver lesion diagnoses. 

 

Ultrasound Imaging 

High-frequency sound waves are used in 

ultrasound imaging, a non-invasive medical 

imaging technique, to create images of inside body 

structures [28]. Many characteristics, such as 

frequency, wavelength, resolution, penetration 

depth, and picture contrast, define ultrasound 

imaging. A variety of formats, including DICOM, 

JPEG, PNG, and BMP, are available for the storage 

and transmission of ultrasound images [29]. 

Considerable advancements have been made in the 
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segmentation and classification of diseases in 

ultrasound imaging. [30] markedly improved 

clinical diagnostic accuracy by introducing a novel 

deep learning-based methodology specifically 

intended for the precise segmentation of liver 

lesions on ultrasound images. In accordance with 

this, [31] suggested a method based on graph-cut 

techniques that produced reliable kidney tumour 

segmentation outcomes in ultrasound scans.  

Tumor border delineation accuracy is improved by 

this method. Simultaneously, [32] made progress 

in the realm of cardiac ultrasound by putting out an 

automated technique that makes the process of left 

atrial segmentation easier. When diagnosing atrial 

diseases, this is an important consideration. In the 

discipline of obstetrics, [33] put out a novel 

paradigm that blends generative adversarial 

networks and convolutional neural networks. This 

novel method improves fetal ultrasound image 

segmentation and offers insightful information for 

assessments of the health of the fetus. [34] went 

into musculoskeletal examinations by broadening 

the scope. A method for classifying abnormal 

characteristics in joint ultrasound images has been 

developed that combines texture analysis and 

machine learning. This methodology offers a non-

invasive method for the assessment of 

musculoskeletal conditions. 

 

Nuclear Medicine Imaging 

Trace levels of radioactive materials are used in 

nuclear medicine imaging, a unique branch of 

medicine, to diagnose and treat a variety of 

illnesses. Usually, the radioactive substance is 

injected intravenously or consumed, and after that, 

it is scanned with the help of specialist cameras that 

can identify the radiation the material emits. 

Nuclear medicine imaging techniques come in 

several forms, such as planar imaging, PET, and 

single photon emission computed tomography 

(SPECT). There are a number of widely used 

formats for nuclear medicine imaging data, such as 

DICOM and NIfTI [35]. Disease segmentation and 

classification have advanced significantly as a 

result of developments in nuclear medicine 

imaging. [36] showed how deep learning 

techniques may be applied to effectively identify 

lung nodules in PET scans, which allows for 

accurate tumor localization. 

Similar to this, [37] presented a novel method that 

combines multimodal data, such as PET and 

SPECT imaging, to produce a strong framework 

for categorizing Alzheimer's disease into several 

stages. [38] created a machine learning-based 

method for cardiovascular imaging that greatly 

automates the analysis of myocardial perfusion 

abnormalities. This development significantly 

improves the all-encompassing assessment of 

cardiac health. Concurrently, the review of 

oncological studies by [39] demonstrated a fusion 

paradigm integrating PET and MRI, validating the 

methods of these modalities in the diagnosis and 

categorization of prostate cancer. In addition, the 

groundbreaking work in neuro-oncology by [40] 

has built a radiomics-centered strategy. This 

method emphasizes the value of quantitative image 

analyses by using PET scans to categorize gliomas. 

 

Optical Imaging 

Using visible, infrared, or ultraviolet light to take 

pictures of objects is a commonly used technique 

known as optical imaging [41]. Optical imaging is 

characterized by several factors, such as spectral 

range, resolution, and depth of field. In optical 

imaging, a number of different formats are utilized. 

The JPEG format, a lossy compression format that 

is extensively used in digital photography, is the 

most commonly accepted standard [42]. Another 

kind is the TIFF format, which is frequently used 

in scientific and medical imaging and is a lossless 

compression format [43]. Significant progress has 

been made in the segmentation and categorization 

of diseases thanks to developments in optical 

imaging. Remarkably, [44] improved the accuracy 

of recognizing diseased characteristics by precisely 

segmenting retinal lesions in optical coherence 

tomography (OCT) images using machine 

learning.  

A multi-modal fusion technique integrating 

hyperspectral and fluorescence imaging was 

presented by [45] in their work. The goal of this 

method is to increase the precision of dermatology 

diagnosis and improve the classification of skin 

lesions. An automated approach for polyp 

segmentation in endoscopic pictures using deep 

learning was given by [46] in the context of 

gastrointestinal imaging. The early diagnosis of 

colorectal problems is aided by this framework. In 

response to neurological difficulties, [47] 
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developed a novel technique that uses optical 

fluorescence imaging to classify brain tumors, 

making intraoperative tumor delineation easier. 

Furthermore, [48] used multispectral imaging in 

oncology to categorize breast lesions, illustrating 

the potential of spectral data in enhancing disease 

classification. 

 

ARTIFICIAL INTELLIGENCE 

The process of building clever devices using 

massive amounts of data is known as artificial 

intelligence. These computers do tasks that are 

comparable to those carried out by people by using 

their prior experiences as a basis for learning [49]. 

It increases the efficacy, accuracy, and efficiency 

of human labor. When viewed from above, 

artificial intelligence can be separated into two 

primary categories: functionality-based AI and 

capability-based AI (refer to Figure 2). 

Furthermore, from a technological standpoint, 

artificial intelligence (AI) includes a number of 

fields, such as natural language processing, deep 

learning, and machine learning. 

 

 

Figure 2: Hierarchy of AI 

Artificial Intelligence-based on Capabilities 

Based on capabilities, artificial intelligence can be 

divided into three main categories:  

1. The first kind of AI is called narrow AI, or 

weak AI, and it is limited to a single task [50]. It 

centers on a particular set of cognitive skills and 

how they develop over the course of a spectrum. 

Narrow AI applications are becoming more 

commonplace in our daily lives as machine 

learning and deep learning approaches grow. 

2. Artificial general intelligence (AGI), 

sometimes referred to as strong AI or deep AI, is 

the second type of AI. It is the ability of a computer 

with general intelligence to learn and use its 

intelligence to solve any problem [51]. Artificial 

General Intelligence (AGI) can demonstrate 

cognitive functions, understanding, and behavior 

that are nearly identical to human abilities in any 

given situation.  

3. Artificial superintelligence (ASI) is the 

third category of AI, which is capable of thinking 

by itself and outperforming human intelligence 

through the demonstration of cognitive abilities. 

The most advanced, potent, and clever type of AI 

is called artificial superintelligence (ASI), or super 

AI for short. It is more intelligent than even the 

most sophisticated human minds. It is capable of 

abstract thought and interpretations that humans 

cannot [52].  

 

Artificial Intelligence-based on Functionalities 

Based on functionalities, AI can be divided into 

four categories:  

1. Reactive machines are AI systems that 

don't remember past experiences or use them to 

forecast future behavior. They watch, only use info 

that already exists, and respond to their 
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surroundings. Reactive machines have limited 

skills and are assigned specific tasks [53]. 

2. AI with limited memory makes judgments 

by training on historical data [54]. These systems 

have a short-lived memory. They cannot add this 

past data to their experience library, but they can 

view it for a short time.  

3. One high-level topic that is only now 

conceptualized theoretically is the Theory of Mind. 

Such AI necessitates a thorough comprehension of 

how one's environment, including other people and 

objects, might affect one's emotions and conduct 

[55]. It ought to be able to understand the thoughts, 

feelings, and emotions of people.  

4. Self-aware AI, which refers to systems that 

comprehend their internal characteristics, 

emotional states, and contextual situations, 

including human emotions, is a completely 

theoretical term [56].  

 

RESEARCH METHODOLOGY 

To compile current research and discussions about 

the useful application of AI in medical image-

based diagnostics, a systematic review approach 

was taken. An organized database search approach 

was used to find the first batch of pertinent primary 

research. Web of Science, Scopus, ScienceDirect, 

Google Scholar, and Semantic Scholar are the five 

well-known online databases that were included in 

the search (Table 1).  

 

Table 1: Results From Searched Databases 

Library Total No. of Results 

Scopus 3125 

Web of Science 3485 

ScienceDirect 9357 

Google Scholar 7458 

Semantic Scholar 5749 

Throughout this procedure, a collection of 

keywords—such as "medical imaging," and "AI" 

were used in a number of fields, including the title, 

abstract, and complete text. In order to obtain the 

most pertinent published papers, Boolean operators 

such as 'and' were inserted between the search 

phrases. Throughout the selection process, these 

papers were improved in accordance with the 

qualifying requirements (Figure 3).

Figure 3: Search And Selection Processes 
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SYSTEMATIC SEARCH RESULTS 

Notable developments in recent research indicate 

that great progress has been made in the treatment 

of brain illnesses. [83] achieved an amazing 

accuracy rate of 0.95 in 2022 by developing a novel 

3D brain slice classification method. This 

represented a noteworthy breakthrough in the 

neuroimaging area. Nonetheless, it is critical to 

recognize that issues with model generalization 

and the validation of various datasets continue to 

be areas of concern. The combination of SegNet 

and deep belief networks for the segmentation and 

classification of brain tumors in 2022 was another 

significant advancement [84]. The accuracy rates 

that this fusion produced were 0.933 and 0.921. 

Nonetheless, enduring obstacles continue, such as 

disparities in class and dataset diversity. [85] used 

a CNN-LSTM method in 2022 to identify brain 

tumors, and they were able to obtain a noteworthy 

0.92 accuracy rate. It is important to do more 

thorough clinical validation. Conversely, [86] 

presented a deep autoencoder in 2022 for the 

purpose of detecting brain tumors, exhibiting a 

remarkable 0.97 accuracy rate. This emphasizes 

how crucial thorough clinical robustness is.  

Turning our focus to Alzheimer's illness, it is 

projected that in 2022, CNNs and random forests 

was utilized for classification, yielding an accuracy 

rate of 0.926 and potentially providing an early 

diagnosis (87). However, there are still issues with 

scaling and applying this strategy to a variety of 

populations. In 2020, [93] presented a noteworthy 

deep learning model for lung disease detection 

using chest X-rays, particularly during the 

COVID-19 pandemic. With an accuracy rating of 

0.989, this model highlights AI's potential for 

pandemic response. The availability of data and the 

ability to adjust to changing viral strains are 

persistent issues. Similarly, [94] used chest X-ray 

data in 2020 to diagnose lung problems using k-

nearest neighbors (KNN). Their remarkable 

accuracy rate of 0.9809 was attained. Large 

datasets are necessary, though, as is the capacity to 

modify models in real time in response to shifting 

clinical circumstances.  

Turning the focus from COVID-19 to lung 

illnesses in general, [95] classified lung nodules in 

2018 using deep CNNs. Their accuracy rate came 

in at 0.68, and their main goals were to increase 

model resilience and accuracy. In 2022, [96] 

presented an enhanced deep learning model 

utilizing Bayesian principles for COVID-19 

identification, attaining a remarkable 0.96 

accuracy rate. On the other hand, managing a 

variety of datasets, reducing bias, and enhancing 

data accessibility are essential factors. In 2022, 

[98] used chest CT data to use a multi-task multi-

modality SVM technique for early COVID-19 

detection. With an accuracy rate of 0.89, they 

demonstrated the value of SVMs in the 

classification of COVID-19 cases. The availability 

of data and the requirement for additional accuracy 

improvements are ongoing problems. In order to 

maximize random forest (RF) in lung nodule 

localization in 2022, [99] concentrated on feature 

processing, resulting in a segmentation accuracy 

rate of 0.96.  

The importance of feature engineering for this task 

was highlighted in this study. Obstacles can 

include more development and clinical 

implementation. In 2020, [100] introduced a 

unique method for unsupervised deep clustering in 

the stratification of lung cancer patients, using 

DBN and FCM. Although promising, further 

widespread validation and adjustment to a range of 

patient populations are required. Deep learning 

approaches have been the focus of current research 

in the realm of liver illnesses, with an emphasis on 

liver segmentation that attained high sensitivity 

and specificity in 2022 [101]. One of the challenges 

is integrating it effectively into clinical practice. 

NucleiSegNet attained an F1 score of 0.83 in 2021 

by concentrating on segmenting images of liver 

cancer histology. Nevertheless, there were issues 

with the model's adaptability [102]. LRFNet 

evaluated liver reserve function in 2022 and found 

an AUC of 0.774 [103].  

Improving precision and proving clinical 

significance are difficult tasks. 2019 saw the use of 

Gaussian mixture models and deep learning 

approaches for liver cancer detection, which 

required extensive clinical validation [104]. 

Achieving an accuracy of 0.96 in 2020, liver 

segmentation customized for fusion-guided 

therapies shown promising clinical applications 

[105]. In 2020, a 3D neural network was employed 

with moderate sensitivity and specificity to 

evaluate the burden of liver tumors with the goal of 

achieving enhanced accuracy [106]. In 2022, [107] 

introduced an atrous residual encoder for vertebrae 
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segmentation in the realm of vertebral disorders, 

attaining a high degree of accuracy. This signifies 

a noteworthy advancement in the identification and 

treatment of spinal disorders. A method for 

identifying vertebrae from MRI scans was 

described in 2021 by [108], showing potential 

clinical utility and an outstanding accuracy of 

0.955. With a Dice score of 0.91, [109], another 

2021 study, concentrated on identifying lumbar 

vertebrae from X-ray images. This high score 

suggests that fractures and associated conditions 

might be evaluated.  

Researchers used deep CNNs in 2020 [110] to 

categorize discs in the lumbar spine, with a high 

accuracy rate of 0.94. This holds out hope for more 

precise and effective diagnosis of diseases relating 

to the spine. Finally, in 2021, [111] obtained a dice 

score of 0.96, indicating accurate laminae 

segmentation. This accomplishment has a great 

deal of promise to advance surgical treatments for 

disorders of the vertebrae. In 2022, [112] presented 

a highly accurate automatic heart segmentation 

method in the field of cardiac disorders. Although 

there is potential for this method in the field of 

cardiology, there are obstacles to its integration and 

generalization. Deep learning was used in a study 

[113] from 2021 to identify cardiac illness using 

electrocardiogram (ECG) data. The study's 

remarkable accuracy rate of 0.994 demonstrates 

the application of AI in this industry. It did, 

however, also highlight how crucial it is to protect 

data privacy and understand outcomes produced by 

AI.  

With an accuracy of 0.92, [114] introduced cardiac 

cine MRI segmentation and disease classification 

in the same year. This emphasizes the value of an 

accurate diagnosis as well as the difficulties posed 

by large dataset sizes. A study [115] published in 

2021 showed how well deep learning works with 

large amounts of ECG data to identify myocardial 

infarction. The study's remarkable accuracy rate of 

0.99 demonstrated deep learning's promise for real-

time clinical applications as well as its capacity to 

overcome obstacles and potential biases. In 2021, 

[116] presented a hybrid DL technique for gland 

segmentation within the context of prostate 

disorders. With a dice score of 0.90, this method 

produced a noteworthy pathological progression. 

More clinical validation is still necessary, though. 

A strategy for segmenting prostate lesions was 

reported by [117] in 2020, and it showed promise 

with a dice similarity coefficient (DSC) of 0.8958. 

The study did, however, encounter difficulties in 

generalizing lesion types and guaranteeing 

robustness across various imaging procedures. 

[118], with an accuracy rate of 0.921, used 3D 

AlexNet for prostate tumor segmentation in 2020. 

This study emphasizes how AI may help with 

uncertainty and interpretability.  

Prostate cancer was divided into segments in 2022 

when [119] introduced prost attention-net. 

Notwithstanding the difficulties with integration, 

they were able to obtain a Dice score of 0.875, 

which is useful information for focused therapies. 

A study conducted in 2020 examined the 

application of machine learning techniques for 

MRI-based prostate cancer diagnosis. The study 

addressed challenges with standardization and 

validation in addition to showcasing possible 

clinical uses. AI plays a major role in pathology; in 

the case of breast illnesses, [121] attained 

impressive accuracy in diagnosing breast cancer 

from histopathology pictures in 2022. A study that 

used deep learning to identify MRI breast lesions 

was conducted in 2019 [122], showcasing 

advances in radiology and resolving issues with 

data privacy and validation.  

Researchers used segmentation and classification 

approaches for mammography images in 2021 

[123], highlighting the possibility of early 

detection and accurate diagnosis. Nonetheless, 

issues with accurate diagnosis and workflow 

integration must be resolved. Researchers [124] 

demonstrated the promise of AI in oncology in 

2022 by using multi-scale feature fusion to classify 

breast cancer. The goal of this strategy was to 

tackle the problems associated with clinical testing 

and model complexity. The same year, [125] 

concentrated on using breast ultrasonography to 

accurately and precisely identify malignant tumors. 

The study focused on the difficulties and clinical 

significance related to image quality and 

integration.  

Despite difficulties with validation and integration, 

[126] improved diagnostic capabilities in 

ophthalmology by achieving high accuracy in 2022 

when classifying glaucoma in retinal pictures. 

Macular edema on OCT images was analyzed in 

2022 by [127] with an astounding accuracy of 

0.992. Though it also draws attention to issues with 
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OCT image variances and validation, this study 

offers insightful information about the evaluation 

of retinal health. The segmentation of curvilinear 

features in optical coherence tomography 

angiography (OCTA) images was the main 

emphasis of [128] in 2020. This study addressed 

problems with image quality and segmentation 

model generalization, which benefited the area of 

ophthalmology.  

A study [129] published in 2021 stated that diabetic 

retinopathy may be detected in eye fundus pictures 

with an accuracy of 0.98. Although early diagnosis 

and intervention are made easier by this high 

accuracy, integration and access equity present 

certain difficulties. With difficulties in clinical 

validation and integration, [130]'s automated 

glaucoma detection using DL convolutional 

networks in 2019 demonstrated the potential of AI 

in ophthalmology. 

 

CONCLUSION 

This systematic review's main objective was to 

present a thorough analysis of AI's place in modern 

medical research, with a focus on how ML and DL 

methods are used to identify diseases. Our goal was 

to investigate the different approaches that are 

frequently utilized in scientific writing by using an 

interdisciplinary approach. Explicit approaches 

were preferred in most research, according to our 

thorough review, with separate implementations of 

ML and DL techniques. It is noteworthy, therefore, 

that a small percentage of research have adopted 

hybrid approaches, skilfully fusing the two 

paradigms.  

After a thorough analysis of the data obtained from 

these different methodologies, a recurring trend 

was observed: the hybrid methodology 

consistently produced useful and applicable 

outputs, suggesting a promising direction for future 

research in the field of medical diagnostics. One 

major problem that surfaced during our 

investigation is the difficulty of finding annotated 

photos for certain conditions, which significantly 

affects the effectiveness of AI models. Our future 

research projects were concentrating on combining 

medical image synthesis and transfer learning 

strategies in order to proactively address this 

obstacle. These novel approaches have the 

potential to alleviate problems associated with 

restricted data availability and are well-positioned 

to significantly advance disease classification and 

segmentation models. Our strategic investment in 

this project demonstrates our commitment to 

developing medical AI and laying out a viable 

course for future research. 
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