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Abstract
Large-scale neural networks have recently transformed medical diagnosis with
exceptional accuracy across various imaging tasks with high accuracy and
efficiency. It is true that as one relies on artificial intelligence (AI) for clinical
settings, the necessity of interpretability and transparency becomes more and more
critical. In this review, we focus on Layer-wise Relevance Propagation (LRP), a
technique that enables us to enhanced interpretability of neural networks by
identifying on what regions the model is relying the most to its decision.
Additionally, it demonstrates neural networks in the medical field of radiology,
pathology, cardiology, neurology, stating where advanced learning algorithms are
utilized for such tasks as tumor detection, image segmentation, and disease
classification, and also outlines their findings. LRP creates clinical trust and
genuine collaboration between health care team and machine systems to resolve
key transparency issues. Relevant current challenges, including scalability and
computational demands, that must be addressed via further research are
discussed, in order to further refine LRP for complex models and to integrate it
into clinical workflows. Despite these challenges, LRP shows great promise in
generating robust chains of divisions as clinical applications across all of these
imaging modalities (X-ray, MRI, CT scan).

Keywords
Artificial Intelligence (AI),
Disease, Layer-wise Relevance
Propagation (LRP), Medical
diagnosis, Neural Networks,
Vision Transformers (ViTs).

Article History
Received on 25 February 2025
Accepted on 25 March 2025
Published on 05 April 2025

Copyright @Author
Corresponding Author: *

Areeba Rashid
E-mail: areebar@dgkmc.edu.pk

INTRODUCTION
In recent years, large-scale neural networks
particularly Convolutional Neural Networks (CNNs)
and Vision Transformers (ViTs) have revolutionized
medical diagnosis by achieving remarkable accuracy
across diverse imaging tasks. In medical imaging

analysis, which has become the domain of CNNs
and ViTs, tasks ranging from tuberculosis detection
in chest X-rays (97.1% sensitivity with EfficientNet-
B4) (Pordeli Shahreki et al., 2024) to load classifying
Alzheimer’s disease using Magnetic Resonance
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Imaging (MRI) have reached state-of-the-art
achievements. Due to their ability to identify and
reduce the number of diagnostic errors and the
associated resource burden (Jia et al., 2024), these
models are very best at picking up and highlighting
small patterns in large datasets. Despite high
computational costs, reliance on carefully labeled
datasets, and the inherent ‘black box’ decisions of
how to intervene however, their deployment has not
been widely attempted (Tulsani et al., 2023).

Need for Interpretability in Medical AI Systems

Machine learning in medical diagnosis enhances
precision and decision-making by supporting clinical
expertise. Given that surgeon skill and experience
bear a direct relationship with the reduction in the
risk of diseases (A. Rashid et al., 2024), AI-driven
models can further aid in minimizing errors and
improving patient outcomes by providing data-driven
insights and real-time assistance.
It is important to be able to interpret the model
decisions such that they are compatible with known
pathological markers like LRP heatmaps showing
correspondence with Alzheimer’s brain regions that
meet the standards for a transparent AI system for
health applications (Lim et al., 2024). AI involves
designing systems that mimic human intelligence
(Shafiq et al., 2025), including explainability maps
that help radiologists interpret and validate AI-
generated results. This enhances trust in AI-assisted
diagnoses, particularly in critical applications like
COVID-19 detection, ensuring accuracy and
reliability in clinical workflows. While current
studies imply as high as 10.3% of AI/medical
research’ code is shareable on reproducible code, and
less than 7% of AI/medical research implements
robust interpretability frameworks, this critical gap is
evident in clinical translation (Gupta et al., 2024).

Layer-Wise Relevance Propagation (LRP)

LRP is a post hoc explanation method to quantify
each input feature contribution to model predictions
by backward propagating relevance scores at the
layers of a network. The key characteristics are that
total relevance is preserved across layers so that the
mathematical consistency is still preserved (Otsuki et
al., 2024). Pixel level heatmaps of regions influences

diagnoses like lung lesions in X-rays (Gupta et al.,
2024), and hippocampal atrophy in Alzheimer’s
MRIs (Böhle et al., 2019). To make it workable for
modern large scale networks, the techniques like
‘relevance splitting’ was extended to Residual
Network (ResNet) and ViTs through skip
connections (Otsuki et al., 2024). AI instruments
produce better solutions to complex problems and
the enhanced understanding of the concepts (Shafiq
et al., 2025). In the end, LRP has the potential to
significantly transition medical AI from being a less
accurate, less reliable, less transparent diagnostic
partner to a more reliable, more accurate, more
transparent diagnostic partner.

Objective and Scope of the LRP

We have reviewed LRP’s approach in bridging the
interpretability gap for medical AI systems. It
analyzes methodological improvements in LRP for
transformer and CNN architectures (Ranjan et al.,
2024). Challenges in obtaining these models include
managing computational overhead, and domain
specific validation in LRP clinical applications across
imaging modalities (Xray, MRI, CT) are promising
(Tulsani et al., 2023), but there remain questions in
producing actual clinical and results the analysis
focuses on practical implementations of LRP that
can be applied to improve diagnostic transparency
without trading off accuracy, such as being integrated
into these high accuracy models (Gupta et al., 2024).
Essential as neural networks are to medical diagnosis,
however, their intermediary processes of making
decisions are complex and therefore must be
intelligible to clinical standards; methods such as
LRP serve well to provide such interpretations. In
this section, we analyze their architectural
foundations and an enhancement of transparency
provided by LRP.

Fundamentals of Neural Networks in Medical
Diagnosis

Various neural network architectures have been
employed in medical diagnosis, each offering distinct
advantages in image analysis and disease detection.
For histopathology analysis of breast cancer, CNNs
are dominantly used with 96-99 % accuracy in breast
cancer classification and for tuberculosis in detecting
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tuberculosis from chest X-rays with 97.1 % sensitivity,
CNNs provide hierarchical feature extraction to
identify localized patterns like tumor margins or
microcalcifications (Zeynali et al., 2024). The ViTs
capture long range dependencies in images but fail to
outperform CNNs in stroke lesion segmentation
(nnU-Net model outperformed ViT based model on
ISLES2022 dataset) (Zafari-Ghadim et al., 2024).
Xception Transformer combines CNNs feature
extraction in local and ViTs in global and reaches 91-
100% accuracy in breast cancer classification (Zeynali
et al., 2024). RNN Byproducts such as RATCHET
and other Architectures that use Recurrent Neural
Network (RNNs) along with CNNs to generate
radiology reports are ways that sequential data
processing helps clinical work flows (Hou et al.,
2021).

Concept and Mechanism

Layer wise Relevance Propagation (LRP) is an
algorithm proposed by Bach et al. to understand and
explain the decision made by a complex machine
learning model, especially neural network. Basically,
it traces back those relevance scores as they come
from the output layer to the input layer and what
had most relevance in a given prediction. To this end,

many of the machines learning models are "black
boxes" that produce accurate predictions but fail to
explain why the predictions were made. Using this
approach, the goal of LRP is to explain classification
decisions pixel wise such as produced as heatmaps
(Bach et al., 2015). Conservation property is a key
principle in LRP, since the relevance conserved as it
propagates backward through the layers of the
network. By recent developments, LRP has been
extended to handle more complex architectures such
as ViTs and ResNets, tailored techniques are
required to handle skip connections and attention
mechanisms (Achtibat et al., 2024). Commonly,
these extensions involve the use of relevance splitting
or modified propagation rules to maintain the
conservation property and provide an accurate
explanation (Ranjan et al., 2024). While LRP is
beneficial, applying this technique to high resolution
images and large models is computationally
expensive and so they require a method like mixed
precision quantization or a sift hybrid approach
which incorporates faster techniques such as Grad-
CAM to improve the efficiency. Table 1 shows
Comparative Analysis with Other XAI Methods
highlighting medical imaging performance and their
limitations.

Table 1: Comparative Analysis with Other XAI Methods
Method Mechanism Medical Imaging Performance Limitations

LRP Relevance redistribution
92% alignment with radiologist annotations
in chest X-rays (Alam et al., 2023)

High memory overhead
for 3D scans

Grad-
CAM

Gradient-weighted
pooling

Best quantitative scores in multi-label
pathology prediction (Alam et al., 2023)

Fails with non-CNN
architectures

SHAP Perturbation analysis
Effective for feature importance ranking
(Taiyeb Khosroshahi et al., 2025)

Computationally
prohibitive for high-res
images

LIME Local surrogate models
Highest medical significance scores (Alam et
al., 2023)

Instability across similar
inputs

Although LRP is only one answer to much-needed
medical AI, which addresses clinical needs in an
anatomically grounded way, one to one must follow
with the balance between computational costs and
interpretative value. However, emerging as optimal
solutions for deployment in the real world, hybrid
methods combining Grad-CAM’s efficiency (83%
faster computation) with LRP’s granularity are
coming into development (Alam et al., 2023).

Applications of LRP in Medical Diagnosis

LRP has already been very useful in multiple
domains of medical diagnosis towards improving
model interpretability and clinical trust. Applications
of LRP have been common in the task of
interpreting deep learning models on chest X-ray,
such as pneumonia detection. LRP heatmaps show
important regions such as lung opacities in matching
with the radiologist annotations. For instance, the
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balance between accuracy (91%) and interpretability
(Mean Relevance Score of 0.85) made such a
ResNet50 based model a good candidate for clinical
integration (Colin et al., 2025). LRP has been
applied to explain predictions in mass like lesions
and Alzheimer's disease diagnosis in brain lesion
analysis. LRP centers its predictions on key brain
regions (such as the hippocampus) or lesion sites
such that sign predictions are consistent with well-
known pathological markers (Ferles et al., 2023).
More recent works shows the applicability of LRP in
feature selection of EEG-based
(Electroencephalogram) motor imagery classification
and in the graph convolutional neural networks for
deciphering BRCAness phenotype relating to cancer
(Nam et al., 2023 and Yang et al., 2024). This
application shows that LRP can provide with insights
into the extreme neural network decisions in ways
that make them more interpretable and reliable.
Furthermore, LRP’s ability to show contributions on
the pixels enables it as a useful tool for proof by
human experts once automated image classification
systems have been proven to reason as they
subconsciously should.

Pathology and Histopathology

LRP promotes the development of pixel-level
heatmaps that indicate tumor regions, which can be
very useful in histopathology where cancer is
detected thanks to high resolution images. This has
increased the transparency of CNN models in
analyzing breast cancer such as by allowing
pathologists to verify AI driven decisions
(Abuhantash et al., 2024). For example, LRP has also
been utilized in machine vision models to process
mammographic images, to increase the diagnostic
accuracy and provide interpretability of the model’s
reasoning (Manuela et al., 2024). Furthermore, LRP
also aids in cancer classification, in gene expression
analysis, where it reduces the complexity of the gene
sets by pinpointing genes that make a significant
contribution, at the condition of good accuracy. LRP
is shown in these applications to be a promising
alternative to current diagnostic methods for cancer
detection (Sheng-Yi Hsu, 2024).

Disease Prediction and Risk Assessment Models

The risk scores that we derive from patient data have
been explained by the LRP within disease prediction
frameworks. LRP has been used for example, in
Alzheimer's disease prediction using Graph
Convolutional Networks (GCNs) and by identifying
the critical connections in the brain network based
on Functional Magnetic Resonance Imaging (fMRI)
data, with a high precision (91%) yet maintaining
interpretability (Ango et al., 2024). At the task of
prediction based on fMRI data, LRP enabled
interpretable explanation with high precision in
learning critical connections in brain networks
through Graph Convolutional Networks (GCNs).
Studies applying GCNs to the Alzheimer ’s disease
Neuroimaging Initiative (ADNI) database have
reported promising predictions on the basis of
cognitive status, from Normal Cognition (NC), Mild
Cognitive Impairment (MCI) to Alzheimer’s Disease
(AD) (Tekkesinoglu et al., 2024). To illustrate, the
study of (Ozdemir et al., 2025) introduces DyEPAD,
a dynamic deep learning model based on GCNs and
tensor algebraic operations, to predict MCI subjects’
progression to AD from EHR. In support of this,
another study proposed a regional brain fusion graph
convolutional network (RBF-GCN) where structural
MRI, diffusion weighted MRI, and amyloid PET is
integrated to highlight unique affinities of the AD
burden to different regions of the brain.
Comorbidity based frameworks modeled through
Graph Neural Networks have also shown high
classification accuracy in multi class classification at
different stages of AD, providing a low cost
unconstrained method of early AD prediction
(Abuhantash et al., 2024).
In particular, LRP significantly outperforms other
explainability methods such as LIME and Deep
Taylor Decomposition in robustness metrics on lung
disease classification (i.e. COVID19). (Pitroda et al.,
2021). One example is U-Net combined with
attention mechanism and ViTs for lung disease
segmentation and classification of chest X ray images;
the details of the study include combining with LRP
to identify the key areas feeding into model decisions
while achieving high segmentation accuracy. Now
not only it increases the diagnostic accuracy but also
gives the clinicians the interpretability, which in turn
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builds the trust and aids in making a more informed
decision in the management of lung diseases (Pitroda
et al., 2021).
LRP has already been shown to be useful for
personalized medicine and treatment
recommendation by explaining model holds and
extracting patient specific features predicting outputs.
For instance, LRP can mark efficacy biomarkers or
safety biomarkers with which clinicians can
personalize interventions based on an individual’s
needs. In the realm of cancer therapy, LRP makes
learning outcomes attributable to single genes so that
they can among other things explain their
importance and pinpoint targetable genes for
individualized therapies (Böhle et al., 2019). This
capability increases the precision of a precise
treatment strategy based on knowledge now deeper
on a patient’s unique characteristics. Furthermore,
we also integrated Genetic Algorithm-Enhanced
Convolutional Neural Networks with LRP to
improve the understanding of clinicians for CNN
based diagnostic decision by pinpointing influential
regions in medical image for oral cancer detection
(Khanna et al., 2024). As well, LRP is useful for
understanding how single pixels contribute to
classifications for multiple images datasets thereby
generating visual heatmaps that help human experts
check decision and direct subsequent analysis on
candidate regions of interest (Bach et al. 2015). LRP
provides these incites in a form that is detailed,
interpretable, and bridges the gap between so
complex AI models and ultimately how a clinical
decision is to be made.

Evaluation of LRP in Large-Scale Neural Networks

This analysis, however, is also central to the use of
LRP in these large scale networks where it can be
deployed as trade between accuracy and
interpretability. While LRP increased interpretability
(Mean Relevance Score of 0.85), it did not hurt the
diagnostic accuracy (91%) (Colin et al., 2025). Very
well, the use of LRP in Alzheimer’s prediction
models maintained high sensitivity and specificity
while ensuring relevance alignment with clinical
biomarkers (Ango et al., 2024). The general success
of achieving such a balance often comes with the
consideration of the model complexity where simpler

models can perform as well or even better as more
complex ones, yet providing more transparency. In
particular, simpler, intrinsically interpretable neural
networks can achieve similar predictive performance
as deep convolutional neural nets (CNNs) and better
determine key patterns in the data1. In doing so, it
points out the need to have both considered when
choosing an accurate model and explanation model
as we try to balance accuracy and interpretability
(Lovo et al., 2024).

Case Studies of LRP in Large Datasets

Datasets such as the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) have been widely
utilized in fMRI-based Graph Convolutional
Network (GCN) models, demonstrating their
potential to accurately differentiate Alzheimer’s
patients from healthy individuals while offering
interpretable insights into brain connectivity (Ango
et al., 2024, Colin et al., 2025). In a dataset for
pneumonia detection, LRP heatmaps consistently
showed brain regions that are also relevant for
diagnosis, while improving clinical trust without
sacrificing AUC-ROC performance measures (Colin
et al., 2025). Using chest X-rays, lung disease
segmentation and classification was studied with U-
Net (including attention) and ViTs. To explain, the
model decisions were explained using LRP, we
identified the crucial areas that helped the model
make decisions (Gupta et al. 2024). EEG sleep stage
classification is interpreted based on LRP. In the
LRP method, the contribution of each frequency
pixel in the input time-frequency image to the model
prediction is evaluated under the condition that
aligns with sleep scoring guidelines. For the input
used, it used the MSSENet method which consists of
the MSCNN module and the residual squeeze and
excitation (R-SE) block based CNN (Zhou et al.,
2024).
The Universal Local Adversarial Network (ULAN) is
an example of a semi white box attack network that
utilizes LRP to generate universal adversarial
perturbations (UAP) of the target regions in the SAR
(Synthetic Aperture Radar) images. Through LRP,
we calculated the model’s attention heatmaps and
thus the target regions of SAR images that receive
high relevance for recognition results (Du et al.,
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2022). For AD based on MRI, convolutional neural
network decisions were visualized using LRP. The
LRP method is patient specific with high inter
patient variability and the actual high relevance
correlated well with what is known from literature
(Böhle et al., 2019).
Large scale medical imaging is complex model and
computationally challenging problem that presents
significant hurdles for Layer-wise Relevance
Propagation (LRP) The fine-grained relevance
mapping needed by LRP increases computation
overhead when processing such high resolution
medical images as 3D MRI scans (Zakaria et al.,
2024), and modern architectures such as ViTs
further add difficulties to be overcome by designing
focused relevance redistribution techniques that are
capable to work with skip connections and attention
mechanism (Yan et al., 2024). These issues must be
tackled utilizing hybrid solutions, i.e., the
combination of LRP with the faster methods such as
Grad-CAM keeping the computational costs in
balance and interpretability. In addition,
optimization strategies such as mixed precision
quantization can reduce demands for computation
and therefore enable LRP analysis of ViTs. However,
from a manufacturing standpoint, these
advancements are extremely important because they
are making LRP an appealing technique in
complicated diagnostic medical scenarios (Tan et al.,
2024).

Optimization Techniques

Hybrid approaches combining LRP with faster
methods like Grad-CAM have been proposed to

reduce computational costs while preserving
interpretability.(Pitroda et al., 2021) To address the
computational demands of LRP, particularly in large-
scale medical imaging, hybrid approaches have
emerged that combine LRP with computationally
efficient methods like Grad-CAM.(Gupta et al.,
2024)These hybrid techniques aim to strike a balance
between detailed interpretability and practical
feasibility.(Bach et al., 2015)By leveraging Grad-CAM
for initial feature localization and then refining the
analysis with LRP, these methods can reduce
computational overhead while preserving key
interpretative insights. Such strategies are necessary
to facilitate the wider uptake of such AI interpretable
in clinical settings, where timely and trusted
diagnostics are both necessary and conclude (Lutz et
al., 2023).
LRP is a valuable tool for establishing the connection
between performance and transparency of medical
AI systems. While the computational challenges it
presents are easier than many algorithms, its use in
large scale neural networks still relies on solving it.
Table 2 provides an overview of the applications of
LRP in medical diagnosis. The table is structured
into four columns: 'Medical field' specifies the area
of healthcare (such as radiology, oncology, or
cardiology) where LRP has been applied; 'Ref' cites
the corresponding studies or references; 'Application'
describes how LRP was utilized within that field (e.g.,
image interpretation, disease classification, or risk
prediction); and 'Outcomes' summarizes the key
findings or benefits achieved, such as improved
model transparency, enhanced diagnostic accuracy,
or better clinical decision support.

Table 2 Applications of LRP in Medical Diagnosis
Medical field References Application Outcomes

Radiology

(Santhi et al.,
2025)

Brain tumor
detection using
advanced learning
algorithms

It discusses the use of advanced learning algorithms
like CNNs, SVMs, and hybrid models for brain
tumor detection from MRI images, enhancing
extraction, segmentation, and classification.

(Azeez et al., 2024)

Brain Tumor
Detection using
machine learning
algorithms

The review discusses machine learning techniques
for brain tumor detection from MRI images,
including SVM and CNNs, and emphasizes noise
reduction, intensity normalization, texture analysis,
and diverse datasets for improved diagnostic
outcomes.
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(Farooqui et al.,
2024)

Brain Tumor
Detection using
machine learning
algorithms

It evaluates machine learning techniques for brain
tumor detection from MRI images, highlighting
convolutional neural networks' superior accuracy,
sensitivity, and specificity. It emphasizes traditional
methods' effectiveness in limited dataset scenarios
and data augmentation techniques.

(Junaid et al, 2024)

Brain Tumor
Detection using
machine learning
algorithms

This paper reviews Machine Learning techniques for
brain tumor detection using MRI images,
highlighting their efficacy, reliability, and
computational complexity. It emphasizes early
diagnosis, cancer grade classification, and
advancements in segmentation.

(Berghout, 2024)

Brain Tumor
Detection using
deep learning
techniques

It discusses deep learning techniques for brain
tumor detection, focusing on Convolutional Neural
Networks, GANs, Autoencoders, and Recurrent
Neural Networks. It emphasizes transfer learning
and explainable AI's limited adoption in medical
diagnostics.

Pathology

(Haffner et al.,
2024)

Prostate cancer
biopsies

It presents a classification framework for metastatic
castration-resistant prostate cancer biopsies,
highlighting the significance of AR, NKX3.1,
INSM1, synaptophysin, and Ki-67 in clinical trial
design and practice.

(Vibishan et al,
2023)

Metastatic
castration-resistant
prostate cancer
biopsies

It discusses resource dynamics and intra-tumor
interactions affecting metastatic castration-resistant
prostate cancer biopsies growth and progression,
rather than providing a specific framework for
pathology workup methodologies.

(Ku et al, 2019)
Metastatic biopsy
programs and
genomic testing

It highlights the significance of metastatic biopsy
programs and genomic testing in identifying
actionable targets, DNA repair aberrations, and
guiding therapeutic strategies and clinical trial
eligibility in advanced prostate cancer.

(Trigos et al., 2023)

Biomarker
expression in
metastatic
castration-resistant
prostate cancer
biopsies

It explores biomarker expression in metastatic
castration-resistant prostate cancer biopsies,
highlighting their implications for treatment and
patient stratification, without providing a specific
framework.

Cardiology

(McKinn et al.,
2024)

Heart Health
Yarning Tool

The Heart Health Yarning Tool is a tool designed to
promote shared decision-making in cardiovascular
disease prevention, especially for Aboriginal and
Torres Strait Islander people, enhancing clinician
communication and risk assessment.

(Carlton et al.,
2024)

Risk assessment
tools

The study highlights inaccuracies in risk assessment
tools for atherosclerotic cardiovascular disease
prevention in patients with raised lipoprotein (a),
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suggesting the need for tailored approaches.

(Karwa et al., 2024)
Risk assessment
tools

Risk assessment tools like Framingham,
atherosclerotic CVD calculator, QRISK, and
Reynolds aid in primary prevention by evaluating
risk factors, enabling early identification and
intervention to reduce cardiovascular disease
incidence.

(van Daalen, 2024) Risk Assessment

Cardiovascular disease risk scores are crucial for
identifying high-risk individuals and guiding
preventive interventions, but data source differences
can lead to inaccurate estimations.

(Bhattacharya,
2024)

Brain lesions
identification from
unannotated MRI
and EEG

It introduces a self-supervised method using
contrastive learning to identify brain lesions from
unannotated MRI and EEG data, bypassing the
need for human intervention.

Neurology

(Alaverdyan, 2019)
Epilepsy lesion
detection using
MRI

It discusses unsupervised representation learning for
epilepsy lesion detection using MRI data, focusing
on T1-weighted and FLAIR sequences, voxel-level
outlier detection, and multimodal data integration.

(Chen et al., 2018)

Brain MRI lesion
detection using
constrained
adversarial auto-
encoders

It discusses unsupervised brain MRI lesion
detection using constrained adversarial auto-
encoders, focusing on learning healthy brain MRI
distributions to enhance detection without labeled
datasets.

(Guo et al., 2015)
lesion detection
using T1-weighted
MRIs

It discusses automated lesion detection using T1-
weighted MRIs, combining unsupervised and
supervised methods, but does not specifically
address MRI-EEG instance discrimination for brain
lesion identification.

Benefits of LRP

This adds reliability of the model in clinical contexts
due to its interpretable insights into the model’s
logic provided by LRP. LRP explains the model’s
classification by highlighting image regions most
relevant to its decision, thus empowering AI driven
diagnoses to build trust (Manuela et al., 2024). In
particular, LRP helps in nursing acceptance by
identifying important parts that affect model
decisions. This allows clinicians to validate AI
generated diagnoses and can be effectively integrated
in clinical workflow (Gupta et al., 2024). LRP closes
the gap between complicated AI models and the
clinical decisions by offering transparency, trust and
practical implementation in health care setting.

Limitations of LRP

While the relevance mapping in LRP can be utilized
for high resolution medical images (e.g. 3D MRI
scans), high computational overhead arises in
applying LRP to this type of images. The applications
of LRP are likely to scale as long as the dataset or
model size is not very large. However, since LRP is
based off of the model’s learned features, any bias
that the model is trained on will be reflected and
subsequently amplified in the relevance maps (Gupta
et al., 2024). As a result, while LRP aids
interpretability, it must be deployed within the
computational limits and constrained so as to
prevent LRP bias to ensure its reliable and scalable
deployment in clinical settings.



ISSN: 3007-1208 & 3007-1216 Volume 3, Issue 4, 2025

https:thermsr.com | Ahmad et al., 2025 | Page 14

Future Directions

To alleviate the computational cost without
sacrificing the interpretability, hybrid approaches
consisting of LRP with faster methods such as Grad-
CAM were presented (Otsuki et al., 2024). Reducing
the computational and memory requirements of
ViTs can be done using Mixed-precision quantization
(MPQ). In this case, LRP can assign a mixed-
precision bit allocation to different layers according
to its importance in classification (Ranjan et al.,
2024). The potential of such hybrid strategies and
optimization techniques for making LRP based
interpretations more efficient and practical to deploy
in real world medical AI systems, motivates the
inquiry into the following questions.
Consequently, LRP needs to be extended to deal
with attention layers to enable faithful attributions
for the entire black-box transformer model, while
being computationally efficient (Achtibat et al.,
2024). In the case of ViTs, relevance redistribution
techniques need to be tailored to the skip
connections and attention mechanisms. The
conservation property is guaranteed during the
whole process by this formulation, thus they
maintain the integrity of the explanations generated
by it (Achtibat et al., 2024). Overall, these extensions
ensure that LRP is flexible and robust across these
types of architectures such as transformers and
ResNets, allowing for improved and more trusted
model explanations.

Ethical Issues and Regulatory Consequences

Since their complexity, large scale neural network's
decision making processes are often opaque, and
their clinical acceptance is therefore difficult. For
this reason, LRP provides a transparent mapping
from input data to model prediction that allows
regulators to evaluate the reliability of a model. In
settings such as healthcare, understanding the
reasoning behind a diagnosis is crucial, as it can
directly influence treatment decisions and strengthen
patient trust (Samek et al., 2017).
As AI based medical diagnostics continue increasing,
it becomes necessary to identify those who are at
fault when something goes wrong. As LRP helps, it
makes it easier to determine what were the
important elements that helped the model choose

that path and to identify errors that may have been
caused by specific data input or layers of the model
itself (Montavon et al., 2018), since the FDA's
proposed regulatory Framework for AI/ML based
Software as a Medical Device (SaMD), strongly
underlines on maintaining continuous monitoring
and transparency (Brown et al., 2021).

CONCLUSION
The review explores the ways in which neural
networks have redefined medical diagnosis as a
mission of high accuracy and efficiency for analyzing
complex electronic data. But with more and more
reliance on AI they have realized the importance of
this. This review provides the context of how the
neural network makes a decision by pointing out
Layer-wise Relevance Propagation (LRP) as a helpful
method that aids in building trust, ensuring
transparency, and facilitating the clinical integration
process in healthcare settings. Future research should
focus on refining interpretability methods like LRP
and developing standardized frameworks to ensure
that neural networks in healthcare remain
transparent, trustworthy, and seamlessly integrated
into clinical practice.
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